Dartmouth College
Simulation for Digital Transformation

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Dartmouth College

Simulation for Digital Transformation

Reed H. Harder
Vikrant S. Vaze

Instructeurs : Reed H. Harder

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

32 heures pour terminer
3 semaines à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

32 heures pour terminer
3 semaines à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

avril 2025

Évaluations

13 devoirs

Enseigné en Anglais

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Data Analytics for Digital Transformation
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable
Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 7 modules dans ce cours

Inclus

2 vidéos10 lectures1 devoir3 laboratoires non notés

Uncertainty is an inherent challenge in digital transformation, where organizations often face unpredictable changes in technology, customer behavior, and market dynamics. Whether deciding on resource allocation, optimizing processes, or assessing risks, handling uncertainty effectively is crucial to success. Probability theory provides a structured way to model this uncertainty, empowering managers to make data-driven decisions and embrace digital transformation with confidence. In this unit, we focus on the role of probability in quantifying and understanding uncertainty. By applying these mathematical principles, learners will develop the skills to predict outcomes, assess risks, and design more informed strategies. From anticipating market shifts to evaluating system performance, probability theory is a foundational tool in navigating the complexities of digital transformation.

Inclus

3 vidéos5 lectures2 devoirs3 laboratoires non notés

At this point in the course, you are able to use analytics to predict future outcomes based on historical data. Now, we will learn how to create a more sophisticated, expansive picture of possible outcomes through the use of simulation. By modeling complicated, interconnected processes, simulation techniques can bridge the gap between predictive and prescriptive analytics: not only can we generate outcomes of various actions, but we are also able to identify which action best solves the problem at hand. Specifically, we will explore discrete event simulation which allows us to incorporate many more variables—to ask many more “what if” questions such as: “What would happen if we made this price adjustment?” or “What would happen if we reduced the time spent on manufacturing that part?” By finding answers to such questions, we can generate more focused information to drive better decision-making and more effectively manage risk.

Inclus

2 vidéos4 lectures2 devoirs2 laboratoires non notés

By generating random variables from desired distributions, decision-makers can predict outcomes, optimize processes, and evaluate scenarios with precision. Whether it’s forecasting customer behavior or optimizing operational workflows, the ability to simulate random variables forms the foundation of effective predictive and prescriptive analytics. For example, e-commerce platforms use these techniques to simulate purchase behaviors based on historical customer data, while logistics companies rely on them to optimize delivery routes by accounting for variable factors such as traffic and weather. This unit, we will focus on two essential approaches: the inversion method and the rejection method, each with unique strengths suited for different types of distributions.

Inclus

2 vidéos4 lectures2 devoirs3 laboratoires non notés

Discrete event simulation is a critical tool in digital transformation, enabling organizations to analyze complex systems, manage uncertainty, and make data-driven decisions. This unit builds on foundational knowledge by applying discrete event simulation to real-world scenarios, allowing students to develop complete end-to-end models. These case studies illustrate how simulation can address operational challenges in various industries, from improving customer experience in retail to optimizing manufacturing processes. Students will use Python to implement simulations, applying techniques such as the inversion and rejection methods for generating random variables. By exploring steady-state and non-steady-state systems, students will learn to model customer behavior, optimize operational workflows, and evaluate system performance under uncertainty. These skills are essential for leveraging digital transformation technologies to inform managerial decisions.\

Inclus

2 vidéos4 lectures2 devoirs2 laboratoires non notés

Unit 6 brings together all the concepts and techniques learned throughout the course, providing students with the opportunity to develop and analyze complete simulations. The focus is twofold: building trustworthy simulations and exploring the role of simulation in prescriptive analytics. Trustworthy simulations are essential for ensuring that the insights derived from models are accurate, reliable, and actionable. In the context of prescriptive analytics, simulations extend beyond predicting outcomes to recommend actions that optimize decision-making, particularly in complex systems undergoing digital transformation. Note: (if you haven’t taken the Prescriptive Analytics course in this program) Prescriptive analytics uses data, models, and simulations to suggest the best course of action in scenarios with multiple possible outcomes. For example, it can help optimize resource allocation, improve supply chain efficiency, or design customer experiences by running simulations of different strategies and identifying the one that delivers the best results. In this unit, students will use simulation to answer "what-if" and "what-should" questions, equipping them to design solutions that balance trade-offs and achieve organizational goals.

Inclus

2 vidéos2 lectures2 devoirs3 laboratoires non notés

The final unit of this course is a practicum that serves as a mini-capstone project, allowing you to consolidate your learning and demonstrate mastery of the tools and techniques introduced throughout the course. This project is your opportunity to apply simulation, cloud-based tools, and data science methodologies to a practical business problem, providing actionable insights that align with digital transformation initiatives.

Inclus

2 lectures2 devoirs1 laboratoire non noté

Instructeurs

Reed H. Harder
Dartmouth College
5 Cours145 apprenants
Vikrant S. Vaze
Dartmouth College
5 Cours1 780 apprenants

Offert par

Dartmouth College

Recommandé si vous êtes intéressé(e) par Data Analysis

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions